Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex

نویسندگان

  • Jin Young Kang
  • Paul Dominic B Olinares
  • James Chen
  • Elizabeth A Campbell
  • Arkady Mustaev
  • Brian T Chait
  • Max E Gottesman
  • Seth A Darst
چکیده

Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λ DNA. To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β' subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nun protein of bacteriophage HK022 inhibits translocation of Escherichia coli RNA polymerase without abolishing its catalytic activities.

Bacteriophage HK022 Nun protein blocks transcription elongation by Escherichia coli RNA polymerase in vitro without dissociating the transcription complex. Nun is active on complexes located at any template site tested. Ultimately, only the 3'-OH terminal nucleotide of the nascent transcript in an arrested complex can turn over; it is removed by pyrophosphate and restored with NTPs. This sugges...

متن کامل

Bacteriophage HK022 Nun protein arrests transcription by blocking lateral mobility of RNA polymerase during transcription elongation

Coliphage HK022 excludes phage λ by subverting the λ antitermination system and arresting transcription on the λ chromosome. The 12 kDa HK022 Nun protein binds to λ nascent transcript through its N-terminal Arginine Rich Motif (ARM), blocking access by λ N and arresting transcription via a C-terminal interaction with RNA polymerase. In a purified in vitro system, we recently demonstrated that N...

متن کامل

Constitutive expression of a transcription termination factor by a repressed prophage: promoters for transcribing the phage HK022 nun gene.

Lysogens of phage HK022 are resistant to infection by phage lambda. Lambda resistance is caused by the action of the HK022 Nun protein, which prematurely terminates early lambda transcripts. We report here that transcription of the nun gene initiates at a constitutive prophage promoter, P(Nun), located just upstream of the protein coding sequence. The 5' end of the transcript was determined by ...

متن کامل

The structure of the coliphage HK022 Nun protein-lambda-phage boxB RNA complex. Implications for the mechanism of transcription termination.

Nun protein from coliphage HK022 binds to phage boxB RNA and functions, in contrast to phage lambda N protein, as a transcriptional terminator. The basic Nun-(10-44) peptide contains the boxB RNA binding arginine rich motif, ARM. The peptide binds boxB RNA and competes with the phage lambda ARM peptide N-(1-36) as indicated by nuclear magnetic resonance (NMR) spectroscopy titrations. In two-dim...

متن کامل

Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase.

Escherichia coli RNA polymerase translocates along the DNA discontinuously during the elongation phase of transcription, spending proportionally more time at some template positions, known as pause and arrest sites, than at others. Current models of elongation suggest that the enzyme backtracks at these locations, but the dynamics are unresolved. Here, we study the role of lateral displacement ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017